Parameter estimation for fractional Ornstein–Uhlenbeck processes
نویسندگان
چکیده
منابع مشابه
Parameter Estimation for Fractional Poisson Processes
The paper proposes a formal estimation procedure for parameters of the fractional Poisson process (fPp). Such procedures are needed to make the fPp model usable in applied situations. The basic idea of fPp, motivated by experimental data with long memory is to make the standard Poisson model more flexible by permitting nonexponential, heavy-tailed distributions of interarrival times and differe...
متن کاملParameter estimation for fractional Ornstein-Uhlenbeck processes
We study a least squares estimator b θT for the Ornstein-Uhlenbeck process, dXt = θXtdt+σdB H t , driven by fractional Brownian motion B H with Hurst parameter H ≥ 1 2 . We prove the strong consistence of b θT (the almost surely convergence of b θT to the true parameter θ). We also obtain the rate of this convergence when 1/2 ≤ H < 3/4, applying a central limit theorem for multiple Wiener integ...
متن کاملEstimation of the Hurst parameter in some fractional processes
We propose to estimate the Hurst parameter involved in fractional processes via a method based on the Karhunen-Loève expansion of Gaussian process.We specifically investigate the cases of the Fractional Brownian motion(FBm) and the Fractional Ornstein-Uhlenbeck(FOU) Family. The main tool is the analysis of the residuals of a convenient linear regression model. We numerically compare our results...
متن کاملParameter Estimates for Fractional Autoregressive Spatial Processes
A binomial-type operator on a stationary Gaussian process is introduced in order to model long memory in the spatial context. Consistent estimators of model parameters are demonstrated. In particular , it is shown thatˆdN − d = OP ((Log N) 3 N), where d = (d1, d2) denotes the long memory parameter.
متن کاملParameter estimation for α-fractional bridges
Let α, T > 0. We study the asymptotic properties of a least squares estimator for the parameter α of a fractional bridge defined as dXt = −α Xt T−t dt + dBt, 0 6 t < T , where B is a fractional Brownian motion of Hurst parameter H > 12 . Depending on the value of α, we prove that we may have strong consistency or not as t → T . When we have consistency, we obtain the rate of this convergence as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics & Probability Letters
سال: 2010
ISSN: 0167-7152
DOI: 10.1016/j.spl.2010.02.018